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Overview

Introduction
» graphical models + belief propagation

> specialization to Gaussian model

Analysis of Gaussian BP

» walk-sum analysis for means, variances, covariances?

» orbit-product analysis/corrections for determinant?

Current Work on Generalized Belief Propagation (GBP) [Yedidia et
al]

> uses larger “regions” to capture more walks/orbits of the
graph (better approximation)

» However, it can also lead to over-counting of walks/orbits
(bad approximation/unstable algorithm)!

!Earlier joint work with Malioutov & Willsky (NIPS, JMLR '06).
%Johnson, Chernyak & Chertkov (ICML '09).



Graphical Models

A graphical model is a multivariate probability distribution that is

expressed in terms of interactions among subsets of variables (e.g
pairwise interactions on the edges of a graph G).
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Markov property:
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Given the potential functions ¢, the goal of inference is to compute
marginals P(x;) = va\- P(x) or the normalization constant Z,

which is generally difficult in large, complex graphical models.



Gaussian Graphical Model

Information form of Gaussian density.

P(x) x exp {—%XTJX + th}

Gaussian graphical model: sparse J matrix
Jij #0ifand only if {i,j} € G

Potentials: 1,
Vilx)) = e~ 2Jixithix;
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Inference corresponds to calculation of mean vector = J~1h,

covariance matrix K = J~! or determinant Z = det J~1. Marginals
P(x;) specified by means p; and variances Kij;.



Belief Propagation

Belief Propagation iteratively updates a set of messages p;—.;(x;)
defined on directed edges of the graph G using the rule:
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Iterate message updates until converges to a fixed point.

Marginal Estimates: combine messages at a node
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Belief Propagation I

Pairwise Estimates (on edges of graph):
Y(xi, %)
i () pj—i (xi)
Pij(xi,%)

1 - .
P(xi, x;) = Zwi(X;)wJ(&)

Estimate of Normalization Constant:

Zj
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BP fixed point is saddle point of RHS with respect to
messages/reparameterizations.

In trees, BP converges in finite number of steps and is exact
(equivalent to variable elimination).



Gaussian Belief Propagation (GaBP)
Messages p1;—j(xj) o< exp{3i—jx? + Bijx;}.
BP fixed-point equations reduce to:

Qi = J,-J2-(J,-,-—a,-\j)71

Binj = —Jyi(Ji — any) " H(hi+ By)
Marginals specified by:
KPP = (Jii — Z i)t
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Gaussian BP Determinant Estimate

Estimates of pairwise covariance on edges:
-1
ko — ((Jian o Jy
(@) Ji o di—ap

Estimate of Z £ det K = det J~1:

Z..
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where Z; = K})p and Zj = det K(k:.j%.

Exact in tree models (equivalent to Gaussian elimination),
approximate in loopy models.



The BP Computation Tree

BP marginal estimates are equivalent to the exact marginal in a
tree-structured model [Weiss & Freeman].
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The BP messages correspond to upwards variable elimination steps
in this computation tree.



Walk-Summable Gaussian Models

Let J=1/—R. If p(R) < 1then (/ — R)~1 =% RL

Walk-Sum interpretation of inference:
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Walk-Summable if 5_,,; . |R"| converges for all i, j. Absolute
convergence implies convergence of walk-sums (to same value) for
arbitrary orderings and partitions of the set of walks. Equivalent to
p(Rl) < 1.



Walk-Sum Interpretation of GaBP

Combine interpretation of BP as exact inference on computation
tree with walk-sum interpretation of Gaussian inference in trees:

> messages represent walk-sums in subtrees of computation tree
» Gauss BP converges in walk-summable models
» complete walk-sum for the means

» incomplete walk-sum for the variances



Complete Walk-Sum for Means

Every walk in G ending at a node i maps to a walk of the
computation tree T; (ending at root node of T;)...

e
g
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Gaussian BP converges to the correct means in WS models.



Incomplete Walk-Sum for Variances

Only those totally backtracking walks of G can be embedded as
closed walks in the computation tree...
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Gaussian BP converges to incorrect variance estimates
(underestimate in non-negative model).



Zeta Function and Orbit-Product

What about the determinant?
Definition of Orbits:
» A walk is closed if it begins and ends at same vertex.

» It is primitive if does not repeat a shorter walk.

» Two primitive walks are equivalent if one is a cyclic shift of
the other.

» Define orbits £ € L of G to be equivalence classes of closed,
primitive walks.

Theorem. Let Z = det(/ — R)™L. If p(|R|) < 1 then
z=J[a-rRHYy 2] 2
¢ ¢

A kind of zeta function in graph theory.



Zpp as Totally-Backtracking Orbit-Product

Definition of Totally-Backtracking Orbits:

» Orbit is reducible if it contains backtracking steps ...(ij)(ji)...,
else it is irreducible (or backtrackless).

» Every orbit ¢ has a unique irreducible core v = I'({) obtained
by iteratively deleting pairs of backtracking steps until no more
remain. Let £, denote the set of all orbits that reduce to ~.

» Orbit is totally backtracking (or trivial) if it reduces to the
empty orbit ['(¢) =0, else it is non-trivial.

Theorem. If p(|R|) < 1 then ZPP (defined earlier) is equal to the
totally-backtracking orbit-product:

zr=1] z
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Orbit-Product Correction and Error Bound

Orbit-product correction to ZP:

Z =2 H Z
1z

Error Bound: missing orbits must all involve cycles of the graph...

V>4
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where p £ p(|R|) < 1 and g is girth of the graph (length of
shortest cycle).



Reduction to Backtrackless Orbit-Product Correction

We may reduce the orbit-product correction to one over just
backtrackless orbits ~y

z=Zp[[Z=2:]]| I] 2
¢

vy LeL(y)

z
with modified orbit-factors Z,’Y based on GaBP

=(1- H i)t where i & (1 o)t
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The factor (1 — a,-\,-)*l serves to reconstruct totally-backtracking
walks at each point j along the backtrackless orbit .



Backtrackless Determinant Correction

Define backtrackless graph G’ of G as follows: nodes of G’
correspond to directed edges of G, edges (ij) — (jk) for k # i.
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Let R’ be adjacency matrix of G’ with modified edge-weights r’
based on GaBP. Then,

Z = Zpdet(l — R')7?



Region-Based Estimates/Corrections

Select a set of regions R C 2V that is closed under intersections
and cover all vertices and edges of G.

Define regions counts (na € Z, A € R) by inclusion-exclusion rule:

nA:1— Z np

BER|ACB

To capture all orbits covered by any region (without over-counting)
we calculate the estimate:

Zr = [ z&8 £ [ (det(/ — Rg)~")"
B

B

Error Bounds. Select regions to cover all orbits up to length L.
Then, ,
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Example: 2-D Grids

Choice of regions for grids: overlapping L x L,
(shifted by 5).

For example, in 6 x 6 grid with block size L =

O0—0—0—0x—0—0




256 x 256 Periodic Grid, uniform edge weights r € [0, .25].
Test with L = 2,4, 8, 16, 32.
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Generalized Belief Propagation

Select a set of regions R C 2V that is closed under intersections
and cover all vertices and edges of G.

Define regions counts (na € Z, A € R) by inclusion-exclusion rule:

nA:1— Z np

BER|ACB

Then, GBP solves for saddle point of

Zr(y) = T Z(vr)™

AR
over reparameterizations {14, A € R} of the form
1
P(x) = > H Yr(xg)"™”
AER

Denote saddle-point by Zs, = Zg (¢5°P).



Example: 2-D Grid Revisited

—o— block estimate
—e— GBP estimate

free energy error

10 4 6 8 10 12 14 16
block size




GBP Toy Example

Look at graph G = K, and consider different choices of regions...

1

BP Regions:

n=-2 2




GBP

“3A" Regions:

GBP

n=+1

24 /N

“4 A" Regions:

n=+1

124, 123




Computational Experiment with equal edge weights r = .32 (the
model becomes singular/indefinite for r > ).

Z = 109

Zyp = 25
Zypp(3A) = 9.9
Zyp(4A) = 544111

GBP with 3A regions is big improvement of BP (GBP captures
more orbits).

What went wrong with the 4A method?



Orbit-Product Interpretation of GBP

Answer: sometimes GBP can overcount orbits of the graph.

» Let 7(R) be the set of hypertrees T one may construct from
regions R.

» Orbit ¢ spans T if we can embed ¢ in T but cannot embed it
in any sub-hypertree of T.

> Let gg = #{T € T(R)|¢ spans T}.
Orbit-Product Interpretation of GBP:

Zgpp = H Zegé
[

Remark. GBP may also include multiples of an orbit as
independent orbits (these are not counted by Z).

We say GBP is consistent if gy < 1 for all (primitive) orbits and
g¢ = 0 for multiples of orbits (no overcounting).



Examples of Over-Counting

Orbit £ = [(12)(23)(34)(41)]:




Conclusion and Future Work

Graphical view of inference in walk-summable Gaussian graphical
models that is very intuitive for understanding iterative inference
algorithms and approximation methods.
Future Work:

> many open questions on GBP.

» multiscale method to approximate longer orbits from
coarse-grained model.

» beyond walk-summable?
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